

1

LOW-MASS STAR

Giant Molecular Cloud in Orion.

O

1

0

 1High-Mass Star

The dark areas in the Orion nebula-giant molecular clouds-are where stars are born.

LOW-MASS STAR

An infrared picture of the the Elephant
Trunk nebula. Proto-stars are seen peek-
ing through their dust clouds.

0

$2 \quad 2$
High-Mass Star

Massive stars form in clusters. The first stars to form blow away the gas and dust, surrounding them.

LOW-MASS STAR

Years in Stage: 5 million

$$
\mathrm{T}=2-3,000 \mathrm{~K}
$$

$L=$ low (covered by a shell of dust)

$$
\begin{aligned}
& R=>5 R \odot \\
& M=1 M \odot
\end{aligned}
$$

LOW-MASS STAR

Heating by gravitational collapse and accretion of particles. No internal fusion.

High-Mass Star

Heating by gravitational collapse and accretion of particles. No internal fusion.

2 ?

High-Mass Star

Years in Stage: 2 million years

$$
\mathrm{T}=2-3,000 \mathrm{~K}
$$

$\mathrm{L}=$ low (covered by a shell of dus)

$$
\begin{aligned}
& R=100 \mathrm{R} \odot \\
& \mathrm{M}=10 \mathrm{M} \odot
\end{aligned}
$$

33

0

3

LOW-MASS STAR

T Tauri Stars 3
High-Mass Star

Rigel - A B star on the main sequence.
0

3

LOW-MASS STAR

Core of the Star

Initiation of hydrogen fusion in core of star.

$$
4{ }_{1}^{1} \mathrm{H}->{ }_{2}^{4} \mathrm{He}+\text { energy }
$$

LOW-MASS STAR

Years in Stage: 50 million
$\mathrm{T}=2-3,000 \mathrm{~K}$
$\mathrm{L}=>2 \mathrm{~L} \odot$
$R=1 R \odot$
$M=<3 M \odot$
Other - Star is still contracting and often have large accretion disks - with future planets - surrounding them.

High-Mass Star
Core of the Star

Fusion begins - CNO cycle produces helium in core.
?

High-Mass Star

Years in Stage: 10 million

$$
\begin{aligned}
& T=20,000 \mathrm{~K} \\
& \mathrm{~L}=100 \mathrm{~L} \odot \\
& \mathrm{R}=10 \mathrm{R} \odot \\
& \mathrm{M}=10 \mathrm{M} \odot
\end{aligned}
$$

Other - Peak wavelength of the star

O P

?

LOW-MASS STAR

A yellow main-sequence star.
0 4

High-Mass Star

Blue main sequence stars go through stages of fusion quickly.

LOW-MASS STAR

Hydrogen builds up helium in the core.

T1

High-Mass Star

Helium fusion produces $\mathrm{C}+\mathrm{O}$ in the core.
$3{ }_{2} \mathrm{He}->{ }_{6}^{12} \mathrm{C}+$ energy
$4_{2}^{4} \mathrm{He}->{ }_{8}^{16} \mathrm{O}+$ energy

High-Mass Star

Years in Stage: 10 million

$$
\begin{gathered}
T=9,000 \mathrm{~K} \\
\mathrm{~L}=10,000 \mathrm{~L} \odot \\
\mathrm{R}=100 \mathrm{R} \odot \\
\mathrm{M}=10 \mathrm{M} \odot
\end{gathered}
$$

Other - No Helium flash; each stage of fusion is faster than the last.

55

$5 ?$

LOW-MASS STAR

Red Giant Star

O

High-Mass Star

Yellow Supergiant Star
Most high mass stars go through a
Cephid variable star stage.

LOW-MASS STAR

Hydrogen shell fusion; helium in core not O P P 55 5
High-Mass Star

Carbon and oxygen fusion produce magnesium, sulfur, neon, and finally silicon.

LOW-MASS STAR

Years in Stage: 2 billion

$$
\begin{gathered}
\mathrm{T}=2500-3500 \mathrm{~K} \\
\mathrm{~L}=1,000-10,000 \mathrm{~L} \odot \\
\mathrm{R}=20-500 \mathrm{~L} \odot \\
\mathrm{M}=1 \mathrm{M} \odot
\end{gathered}
$$

$?$
$?$

High-Mass Star

Years in Stage: 1 million

$$
\begin{gathered}
T=5,000 \mathrm{~K} \\
\mathrm{~L}=50,000 \mathrm{~L} \odot \\
\mathrm{R}=100-200 \mathrm{R} \odot \\
\mathrm{M}=10 \mathrm{M} \odot
\end{gathered}
$$

Other - Very regular pulsations with a period between 1 and 100 days.

LOW-MASS STAR

Yellow Giant Star

O

6

High-Mass Star

Betelguese is an M11a red supergiant star

LOW-MASS STAR

"Helium Flash" Onset of helium fusionin the core as inter-
nal temperature $=100$ million K.
${ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}->{ }_{6}^{12} \mathrm{C}+\mathrm{E}$
or: $4_{2}^{4}{ }_{2} \mathrm{He}->{ }_{0}^{16} \mathrm{O}+\mathrm{E}$

LOW-MASS STAR

Years in Stage: 200 million

$$
\begin{gathered}
T=5-6,000 \mathrm{~K} \\
\mathrm{~L}=2,000-10,000 \mathrm{~L} \odot \\
R=10-400 \mathrm{R} \odot \\
M=<1 \mathrm{M} \odot
\end{gathered}
$$

Other - Sometimes variable, star
contracts and gets hotter.
\square

High-Mass Star

After a succession of shell burning episodes, silicon fusion produces iron in the

High-Mass Star

$$
\begin{aligned}
& \text { Years in Stage: } 100,000 \\
& \qquad \begin{array}{c}
T=3,000 \mathrm{~K} \\
\mathrm{~L}=50,000 \mathrm{~L} \odot \\
\mathrm{R}=7,500 \mathrm{R} \odot \\
\mathrm{M}=<10 \mathrm{M} \odot
\end{array}
\end{aligned}
$$

Other - Iron absorbs energy, outward heat
 pressure drops dramatically.
 core of the star.

7

7

LOW-MASS STAR

$2^{\text {nd }}$ Red Giant Stage

7

High-Mass Star

Supernova 1987a
Material from supernova expands into space, sometimes colliding with dust shells.

The carbon / oxygen core never gets hot enough to fuse.

High-MAss Star

Supernovae release the energy of a billion stars in a few seconds. Elements are fused during the explosion.

LOW-MASS STAR

Years in Stage: 1 billion

$$
\begin{gathered}
T=3-4,000 \mathrm{~K} \\
\mathrm{~L}=500-5,000 \mathrm{~L} \odot \\
\mathrm{R}=10-500 \mathrm{R} \odot \\
\mathrm{M}=<.9 \mathrm{M} \odot
\end{gathered}
$$

Other - 2nd red giant phase, usually a

$?$

High-Mass Star

Years in Stage: a few seconds
T= billions of degrees
$\mathrm{L}=100$ billion $\mathrm{L} \odot$
$R=19 \mathrm{~km}$ core diameter

$$
\mathrm{M}=\text { disperses }
$$

Other - Star collapses on core and rebounds. Shock wave induces fusion of heavy elements at billions of degrees.

8

88

0

LOW-MASS STAR

The gas thrown off by dying stars is called a planetary nebula because in

LOW-MASS STAR

Fusion stops, core white hot.
small telescopes these objects look like planets.
\square —

LOW-MASS STAR

Years in Stage: 50,000
$T=$ Up to $100,000 \mathrm{~K}$ for central star

$$
\mathrm{L}=<.1 \mathrm{~L} \odot
$$

$R=$ Gas shells dozens to hundreds of light years in diameter.

$$
\mathrm{M}=.5 \mathrm{M} \odot
$$

Other - Ejected material forms envelope of gas. Central star is Earth-sized.

8A

High-Mass Star

Neutron stars are degenerate matter - a ball of neutrons with an iron crust.

High-Mass Star

Years in Stage: billions of years
$\mathrm{T}=1$ million degrees
$\mathrm{L}=$ invisible to eye, but visible using x-ray and
gamma ray detectors.
$R=$ size of the island of Manhattan

$$
\mathrm{M}=1.4-2.5 \mathrm{M} \odot
$$

Other - Pulsars are neutron stars that spin at an incredible rate of 100-5,000 rev/sec!

LOW-MASS STAR

White dwarf star.

0

High-MAss Star

A black hole cannot be seen. Only when a black hole is in a binary system can its presence be detected.

8B 8в 8в 8в

LOW-MASS STAR

Heat slowly leaks away as star cools until only a black dwarf - a charcoal briquet in 0

High-Mass Star

A black hole is an intense gravitational source, a kind of infinitely deep well.

LOW-MASS STAR

Years in Stage: 50 billion
$T=20-50,000 \mathrm{~K}$, eventually less than 10 K

$$
\begin{gathered}
\mathrm{L}=<.01 \mathrm{~L} \odot \\
\mathrm{R}=\text { size of Earth }
\end{gathered}
$$

Other - The universe is not old enough for any stars to have evolved to black dwarf.
C

High-Mass Star

Years in Stage: varies
$\mathrm{T}=$ undefined
$\mathrm{L}=0$
$R=0$
$M=>3 M \odot$

0

P

